

Signal Generation Back to Basics

Presented by:

Michel Joussemet

Agilent Technologies

- The need for creating test signals
 - Aerospace Defense to Communications
- From Generating Signals...
 - No modulation
 - Analog Modulation
 - Composite Modulation
- ...To Simulating Signals
 - Simulating real-life signals
- Signal Generators
- Signal Simulation Solutions
- Summary

From Movies

Nov. 1940 - News Flash

Disney releases Fantasia with "Fantasound", a new audio stereophonic sound system

Walt Disney orders eight audio oscillators (HP 200B) for the sound production of the movie Fantasia.

The 200B was used to calibrate the breakthrough sound system of Walt Disney's celebrated animated film, Fantasia

Stimulus/Response Testing

Aerospace Defense

TESTING RADAR TRANSMITTERS and RECEIVERs

To Mobile Communications....

TESTING DIGITAL TRANSMITTERS and RECEIVERs

- The need for creating test signals
 - Aerospace Defense to Communications
- From Generating Signals...
 - No modulation
 - Analog Modulation
 - Composite Modulation
- ...To Simulating Signals
 - Simulating real-life signals
- Signal Generators
- Signal Simulation Solutions
- Summary

The sine wave is the basic, non-modulated signal: It is useful for stimulus/response testing of linear components and for Local Oscillator substitution. Available frequencies range from low RF to Millimeter.

Modulation: Where the Information Resides

Amplitude Modulation

- $v(t) = [1 + m \times \cos(w_m \times t) \times \cos(w_c \times t)]$
- Modulation index

•
$$m = 2 \times V_{sideband} \div V_{carrier}$$

%AM ΔdB

10% -26dBc

Important Characteristics for Amplitude Modulation

- Modulation frequency (rate)
- Depth of modulation (Mod Index)
- Linear AM (%)
- Log AM (dB)
- Sensitivity (depth/volt)
- Distortion %

Agilent Technologies

Amplitude Modulation

Where are AM signals used?

- AM Radio
- Antenna scan
- ASK (early digital 100101)

Frequency Modulation

Where are FM signals used?

- FM Radio
- Aviation Flight systems
- Radar
- FSK (early digital 1011)

Important Characteristics for Frequency Modulation

- Frequency Deviation
- Modulation Frequency
- dcFM
- Accuracy
- Resolution
- Distortion
- Sensitivity (dev/volt)

Agilent Technologies

Frequency Modulation

V= $A sin[2pf_ct + \beta m(t)]$

Important Characteristics for Frequency Modulation

- Frequency Deviation
- Modulation Frequency
- dcFM
- Accuracy
- Resolution
- Distortion
- Sensitivity (dev/volt)

Phase Modulation

Where are Phase Modulated signals used?

- PSK (early digital 1010)
- Radar(pulse coding)

Important Characteristics for Phase Modulation

- Phase deviation
- Modulation Rate
- Accuracy
- Resolution
- Distortion
- Sensitivity

Phase Modulation

Where are Phase Modulated signals used?

- PSK (early digital 1010)
- Radar(pulse coding)

Pulse Modulation

Where are Pulse Modulated signals used?

- Radar
- High Power Stimulus/Response
- Communications

Simultaneous modulation of two Mod Types

Independent FM and Pulse Modulation

FM during the pulse = chirp

32 QAM Constellation Diagram

• Phase is relative to a reference signal (0 degrees)

Vector Signal Changes or Modifications

- Project Signals to "I" and "Q" Axes
- Polar to Rectangular Conversion
- IQ Plane Shows 2 Things
 - What the modulated carrier is doing relative to the unmodulated carrier.
 - What baseband I and Q inputs are required to produce the modulated carrier

Transmitting Digital Data -- Bits vs Symbols

Binary Data bit = 0,1 **Transmission Bandwidth Required** Transmitting Digital Bits (f 1 = 0, f 2 = 1) f 1 f (t) f 🤈 010101010 Т 2/ T Main lobe width is $2 \times Sample$ rate Symbol = Groups/blocks of Bits 2 bits/symbol (00 01 10 11) Symbol Rate = Bit rate 3 bits/symbol (000 001) 4 bits/symbol (0000 0001 ..) # bits per symbol Symbol 1 (00) Symbol 2 (01) f (t) Symbol 3 (10) Symbol 4 (11) 2/ S S Main lobe width is 2 × Symbol rate Agilent Technologies

Agilent Technologies

Vector Modulation - Where Used

Mobile Digital Communications

- Agilent Technologies

Modern Radars

- The need for creating test signals
 - Aerospace Defense to Communications
- From Generating Signals...
 - No modulation
 - Analog Modulation
 - Composite Modulation
- ...To Simulating Signals
 - Simulating real-life signals
- Signal Generators
- Signal Simulation Solutions
- Summary

Simulating Signals

Add interference/impairments to user data

Simulating Signals

Record/playback real signals scenarios

- The need for creating test signals
 - Aerospace Defense to Communications
- From Generating Signals...
 - No modulation
 - Analog Modulation
 - Composite Modulation
- ...To Simulating Signals
 - Simulating real-life signals
- Signal Generators
- Signal Simulation Solutions
- Summary

Signal Generators

- Basic CW Signals
 - Block Diagram (RF and Microwave)
 - Specifications
 - Applications
- Analog Signals
 - Block Diagram (AM, FM, PM, Pulse)
 - Applications
- Vector Signals
 - Block Diagram (IQ)
 - Applications

RF Source

Reference Section

Agilent Technologies

Synthesizer Section

PLL/Fractional-N...suppress phase noise

Output Section

• ALC

•maintains level output power by adding/subtracting F power as needed si

 Output Attenuator

 mechanical or electronic
 provides attenuation to achieve wide output range (e.g. -136dBm to +17dBm)

Microwave Source

Reference Section

Basic CW Signals – Specifications

Frequency

- Range -- F_{min} to F_{max}
- Resolution smallest frequency increment
- Accuracy is it where it says it is

Accuracy = $\pm 152 \text{ Hz}$

Amplitude

- Range (-136dBm to +17dBm)
- Accuracy (+/- 0.5dB)
- Resolution (0.02dB)
- Switching Speed (19ms)
- Reverse Power Protection

Frequency Sweep

frequency

Ramp sweep

- accuracy
- sweep time
- resolution

Step sweep

- accuracy
- number of points
- switching time

Spectral Purity

Spectral Purity – Phase Noise

As a Local Oscillator

In-Channel Receiver Testing

Out-of-channel Receiver Testing

Receiver Selectivity Spurious Response Immunity

٠

٠

Non-linear Amplifier Testing - TOI

Out-of-channel Receiver Testing - IMD

Stimulus-Response Testing

Signal Generators

- Basic CW Signals
 - Block Diagram (RF and Microwave)
 - Specifications
 - Applications
- Analog Signals
 - Block Diagram (AM, FM, PM, Pulse)
 - Applications
- Vector Signals
 - Block Diagram (IQ)
 - Applications

Analog Signals – Block Diagram

Add AM, FM, PM, and Pulse Modulation

Analog Signals – Block Diagram

Add internal modulation generator

Agilent Technologies

Analog Signals – Applications

Receiver Baseband Distortion

Analog Signals – Applications

Pulsed Radar Testing with Chirps

Signal Generators

- Basic CW Signals
 - Block Diagram (RF and Microwave)
 - Specifications
 - Applications
- Analog Signals
 - Block Diagram (AM, FM, PM, Pulse)
 - Applications
- Vector Signals
 - Block Diagram (IQ)
 - Applications

IQ Modulation

- Good Interface with Digital Signals and Circuits
- Can be Implemented with Simple Circuits
- Fast, accurate state change

Adding the IQ modulator

Baseband IQ signal generation

Baseband Generator: Baseband Filters

Agilent Technologies

Adding an internal Baseband Generator

- Format Specific Signal Generation
- Receiver Sensitivity
- Receiver Selectivity
- Component Distortion

Digital Format Access Schemes

Format Specific Modulation

GSM: multiple users, same frequency, different time slots

 		930.	200	000 (JU MH: GSM	z -	-35.	UU (18m nod	Frame
						ENVI	LP 1/Q		ON	n n n n
Times										Timeslot # 6
GSM	Mod	Type: MS		Sym Rat	ymbol:1 :e:270.8 :0.3006	33333ksps	s Re	ita: PN23 peat: Col		
On		: STANDA Frame: F		Chan: F	-GSMBase 110:10	э1		Pol: Norm .ffEncod		Timeslot Off On
GS# Ti	meslot	Patter	 N	8 8 8-9 8 b/b 8-6-6-	4 4 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		********			<u>Timesl</u> ot Ampl
	0	1	2	3	4	5	6	7	**********	Main Delta
	Corr On	Sync On	Dummy On	Access On	Custom On	Normal On 50dB	Normal On	Normal On 50dB		(imeslot Type (Normal)
						·				
CARREN							********	I POPULATION .		Configure Normal

Agilent Technologies

Digital Receiver Sensitivity

Digital Receiver Sensitivity

Testing a -110 dB sensitivity digital receiver:

X= Failed unit O=Passed unit

Receiver Sensitivity – Connected Solutions

Receiver Selectivity (Blocking Tests)

Frequency

Agilent Technologies

Component Distortion – Adjacent Channel Power Ratio

Component Distortion – Error Vector Magnitude

Component Distortion – EVM

Vector Signals – Applications

Measured EVM = -30 dB, 3.3%

- The need for creating test signals
 - Aerospace Defense to Communications
- From Generating Signals...
 - No modulation
 - Analog Modulation
 - Composite Modulation
- ...To Simulating Signals
 - Simulating real-life signals
- Signal Generators
- Signal Simulation Solutions
- Summary

Signal Simulation Solutions

Simulating real signal environments

Remove Test Signal Imperfections

Remove Test Signal Imperfections – IQ Flatness

Signal Simulation Solutions

Source of error – I/Q modulator, RF chain, IQ path **Result** – passband tilt, ripple, and roll off

Remove Test Signal imperfections – IQ flatness

Solution – measure vector signal generator and apply prodictortion

predistortion

Tradeoff - calculation time, valid cal time

Typical application - wideband, multitone, and multicarrier

Removing Test Signal Imperfections - IMD

Before Predistortion

Measured in-band $IMD = -40 \, dBc$

After Predistortion

Measured in-band IMD = -84 dBc

Agilent Technologies

Removing Test Signal Imperfections – Group Delay

Before Predistortion

EVM -30 dB, 3.3%

After Predistortion

EVM --34 dB, 2%

Non-linear Amplifier Testing

DUT

Signal Studio – Enhanced Multitone

Set relative tone power

Set relative tone phase

Up to 1024 tones

80 MHz correction BW

CCDF plot

Intermodulation Distortion

- Improved IMD suppression (typically > 80 dBc)
- Correct generator with additional devices in the loop
- Lower overall cost-of-test for large # tones

output RF

• Same hardware for ACPR/NPR distortion tests

Adding Impairments to Signals – Fading

SW and interface hw

- Faded analog RF, IF, or IQ for receiver test
- Faded digital IQ baseband for digital subsystem test

RF Capture & Playback

Digital Capture & Playback

- The need for creating test signals
 - Aerospace Defense to Communications
- From Generating Signals...
 - No modulation
 - Analog Modulation
 - Composite Modulation
- ...To Simulating Signals
 - Simulating real-life signals
- Signal Generators
- Signal Simulation Solutions
- Summary

A Portfolio of Signal Generators

Analog Basic & Mid-performance

RF mid-performance

N5181A MXG New price/performance point, fast switching

High performance

RF mid-performance

Vector

N5182A MXG New price/performance point, fast switching, best ACPR

Agilent Signal Studio & Embedded Software product portfolio

Agilent Baseband Studio

- N5110A Baseband Studio for waveform streaming
 - Virtually unlimited playback memory
- N5115A Baseband Studio for fading
 - Optimize number of paths versus bandwidth
 - Up to 48 paths or 30 MHz bandwidth
- N5102A Baseband Studio digital signal interface module
 - Digital I/Q & digital IF output
 - Extremely flexible
- For Further Information:

www.agilent.com/find/baseband_studio

Agilent Technologies

THANK YOU!

